

SCHMELZMETALL JOE ADDITIVE

additiv gefertigte Bauteile aus HOVADUR® CNCS

PRINT YOUR IDEAS

Material date nblatt

additiv gefertigter Bauteile aus HOVADUR® CNCS

1. Werkstoffbeschreibung

HOVADUR® CNCS ist eine thermisch aushärtbare Kupfer-Nickel-Silizium-Legierung mit Chromzusatz. Der Werkstoff hat eine hohe elektrische und thermische Leitfähigkeit bei hoher Härte und Festigkeit, verbunden mit guter Korrosions- und Abriebbeständigkeit. In vielen Anwendungen wird HOVADUR® CNCS eingesetzt, wenn der Einsatz von Legierungen mit Beryllium als Legierungselement nicht opportun ist.

2. Bezeichnungen

Werkstoffbezeichnung SCHMELZMETALL: Werkstoffbezeichnung, EN-Normen Werkstoffnummer, EN-Normen Werkstoffnummer, frühere DIN-Normen Werkstoffnummer, UNS-System (ASTM) Hovadur® CNCS

ähnlich CuNi2Si / CuNi3Si ähnlich CW111C / CW112C ähnlich 2.0855 / 2.0857 C18000

3. Verwendetes Pulvermaterial

Pulverbezeichnung: Chargenreinheit/Gebrauchszustand: Korngrößenverteilung in µm: HOVADUR® CNCS 2A (gebrauchtes Pulver einer Charge) $d_{10} = 20$ -30; $d_{50} = 35$ -45; $d_{90} = 50$ -60 EN ISO 13320

4. Durchgeführtes Post-Processing

Trennverfahren:

Thermische Nachbehandlung:

Probenaufbereitung:

Messung gem.:

Zugprobe ($\theta = 0^\circ$; $\theta = 45^\circ$; $\theta = 90^\circ$)

Dichtewürfel

Härte- und Leitwertproben

Sagen

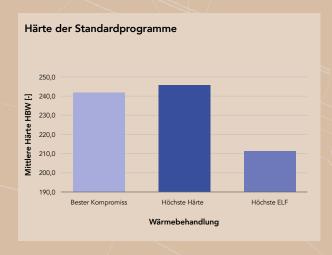
Lösungsglühen und Ausscheidungshärten

Abdrehen auf B10 x 50 (DIN 50125) Abfräsen der Randschicht um 0,5 mm

Anschleifen der Prüffläche

SCHMELZMETALL

5. Wärmebehandlungsoptionen


WB 1 = Wärmebehandlung "Bester Kompromiss"

WB 2 = Wärmebehandlung "Höchste Härte"

WB 3 = Wärmebehandlung "Höchste elektrische Leitfähigkeit"

Aufgrund der nur geringfügigen Unterschiede hinsichtlich der einstellbaren Werkstoffeigenschaften ist die übliche Wärmebehandlung "Bester Kompromiss" zu empfehlen.

SCHMELZMETALL

6. Werkstoffeigenschaften

6.1 Chemische Zusammensetzung (Gewichtsprozente)

Cu	Ni	Si	Cr	Fe	Mn	Pb	Sonstige
Rest	2,0 – 3,0	0,5 – 0,8	0,2 – 0,5	≤ 0,15	≤ 0,1	≤ 0,02	≤ 0,1

6.2 Eigenschaften bei 20°C, wärmebehandelt

140 000 Elastizitätsmodul: Ε MPa Ausdehnungskoeffizient ($\bar{x}_{(20^{\circ}C-300^{\circ}C)}$): α 16,2 ·10-6·K-1 $\mathsf{T}_{\mathsf{Erw}}$ 480 $^{\circ}C$ Erweichungstemperatur: $\mathsf{T}_{\mathsf{Schmelz}}$ Schmelzintervall: 1060 - 1085 °C

Kriterium		Orientierung/ Bezugswert *	Kodierung	WB 1		WB 2		WB 3	
				x	S	x	S	x	S
0,2%-Dehngrenze	R _{p0,2}	θ = 0°	1_1_3	661	6	630	3	556	5
in MPa		θ = 45°	1_1_3	657	3	655	6	574	9
		θ = 90°	1_1_3	592	3	594	1	528	8
Zugfestigkeit	R _m	θ = 0°	1_1_3	747	2	760	3	645	5
in MPa		θ = 45°	1_1_3	755	1	767	4	655	7
		θ = 90°	1_1_3	679	5	695	1	601	6
Bruchdehnung A ₅₀	A ₅₀	θ = 0°	1_1_3	14	1	13	1	16	1
in %		θ = 45°	1_1_3	12	1	10	1	16	2
		θ = 90°	1_1_3	21	1	22	1	22	1
Brinell-Härte	HBW	2	1_1_3	242	3	246	3	211	4
Elektr. Leitfähigkeit im MS/m ***	σ	2	1_1_3	24	0	23	0	26	0
Wärmeleitfähigkeit in W/(m·K) ****	λ	2	1_1_3	175	0	169	0	189	1
Relative Dichte in % (archimedisch geprüft)	P _{ar}	Spez. Dichte: 8,84 g/cm ³	1_2_5	x̄ ≥ 99,50 %					

^{*} Bezugswert: 1 = Messrichtung in Aufbaurichtung, 2 = Messrichtung quer zur Aufbaurichtung

^{**} Kodierung: x_y_z; x = Anzahl verwendete Maschinen, y = Anzahl der Baujobs pro Anlage, z = Anzahl der Proben für eine bestimmte Eigenschaft

^{***} Gemessen mit Fischer Sigmascope SMP10 @ 60 kHz

^{****} Berechnet aus elektr. Leitfähigkeit